Understanding the power and limitations of quantum access to data in machine learning tasks is primordial to assess the potential of quantum computing in artificial intelligence. Previous works have already shown that speed-ups in learning are possible when given quantum access to reinforcement learning environments. Yet, the applicability of quantum algorithms in this setting remains very limited, notably in environments with large state and action spaces. In this work, we design quantum algorithms to train state-of-the-art reinforcement learning policies by exploiting quantum interactions with an environment. However, these algorithms only offer full quadratic speed-ups in sample complexity over their classical analogs when the trained policies satisfy some regularity conditions. Interestingly, we find that reinforcement learning policies derived from parametrized quantum circuits are well-behaved with respect to these conditions, which showcases the benefit of a fully-quantum reinforcement learning framework.
translated by 谷歌翻译
尽管经过多年的努力,但在经典数据的情况下,量子机学习社区只能显示出某些人为加密启发的数据集的量子学习优势。在本说明中,我们讨论了发现学习问题的挑战,即量子学习算法可以比任何经典学习算法更快学习,并研究如何识别此类学习问题。具体而言,我们反思了与此问题有关的计算学习理论中的主要概念,并讨论定义的细微变化在概念上意味着显着不同的任务,这可能会导致分离或根本没有分离。此外,我们研究了现有的学习问题,并具有可证明的量子加速,以提炼一组更一般和充分的条件(即``清单''),以表现出在经典学习者和量子学习者之间的分离的学习问题。这些清单旨在简化一个人的方法来证明学习问题或阐明瓶颈的量子加速。最后,为了说明其应用,我们分析了潜在分离的示例(即,当学习问题是从计算分离中或数据来自量子实验时)通过我们的方法的镜头进行分析。
translated by 谷歌翻译
近年来,变异量子算法(例如量子近似优化算法(QAOA))越来越受欢迎,因为它们提供了使用NISQ设备来解决硬组合优化问题的希望。但是,众所周知,在低深度,QAOA的某些位置限制限制了其性能。为了超越这些局限性,提出了QAOA的非本地变体,即递归QAOA(RQAOA),以提高近似溶液的质量。 RQAOA的研究比QAOA的研究较少,例如,对于哪种情况,它可能无法提供高质量的解决方案。但是,由于我们正在解决$ \ mathsf {np} $ - 硬问题(特别是Ising旋转模型),因此预计RQAOA确实会失败,这提出了设计更好的组合优化量子算法的问题。本着这种精神,我们识别和分析了RQAOA失败的情况,并基于此,提出了增强的学习增强的RQAOA变体(RL-RQAOA),从而改善了RQAOA。我们表明,RL-RQAOA的性能改善了RQAOA:RL-RQAOA在这些识别的实例中,RQAOA表现不佳,并且在RQAOA几乎是最佳的情况下也表现出色。我们的工作体现了增强学习与量子(启发)优化之间的潜在有益的协同作用,这是针对硬性问题的新的,甚至更好的启发式方法。
translated by 谷歌翻译
随着受限制的量子计算机逐渐成为现实,寻找有意义的第一应用程序会加剧。在该领域中,较为研究的方法之一是使用一种特殊类型的量子电路(一种所谓的量子神经网络)作为机器学习模型的基础。顾名思义,粗略地说,量子神经网络可以与神经网络发挥相似的作用。但是,专门针对机器学习环境中的应用,对合适的电路体系结构或模型超参数的了解知之甚少。在这项工作中,我们将功能性方差分析框架应用于量子神经网络,以分析哪些超参数对其预测性能最大。我们分析了最常用的量子神经网络架构之一。然后,我们将其应用于OpenML-CC18分类基准中的$ 7 $开源数据集,其功能的数量足够小,足以适合量子硬件,少于$ 20 $ QUBITS。从功能方差分析获得的超参数的排名中检测到了三个主要重要性。我们的实验都证实了预期的模式,并揭示了新的见解。例如,在所有数据集上的边际贡献方面,设定学习率是最关键的超级参数,而所使用的纠缠门的特定选择被认为是最不重要的选择。这项工作介绍了研究量子机学习模型的新方法,并为量子模型选择提供了新的见解。
translated by 谷歌翻译
基于参数化量子电路的量子机器学习(QML)模型通常被突出显示为量子计算的近期“杀手应用”的候选者。然而,对这些模型的实证和泛化表现的理解仍处于起步阶段。在本文中,我们研究了如何为HAVL \'I \ V {C} EK等人介绍的两个突出的QML模型之间的培训准确性和泛化性能(也称为结构风险最小化)之间的平衡。 (自然,2019年)和Schuld和Killoran(PRL,2019)。首先,利用与良好的古典模型的关系,我们证明了两个模型参数 - 即图像使用的图像和弗罗布尼乌斯的规范 - 模型使用的可观察的规范 - 密切控制模型的复杂性,因此其泛化表现。其次,使用受工艺断层扫描的启发的想法,我们证明这些模型参数还密切控制模型捕获培训示例中相关性的能力。总之,我们的结果引起了对QML模型的结构风险最小化的新选择。
translated by 谷歌翻译
随着真实世界量子计算的出现,参数化量子计算可以用作量子古典机器学习系统中的假设家庭的想法正在增加牵引力的增加。这种混合系统已经表现出潜力在监督和生成学习中解决现实世界任务,最近的作品已经在特殊的人工任务中建立了他们可提供的优势。然而,在加强学习的情况下,可以说是最具挑战性的,并且学习提升将是极为有价值的,在解决甚至标准的基准测试方面没有成功地取得了成功,也没有在典型算法上表达理论上的学习优势。在这项工作中,我们均达到两者。我们提出了一种使用很少的Qubits的混合量子古典强化学习模型,我们展示了可以有效地培训,以解决若干标准基准环境。此外,我们展示和正式证明,参数化量子电路解决了用于古典模型的棘手的某些学习任务的能力,包括当前最先进的深神经网络,在离散对数问题的广泛的经典硬度下。
translated by 谷歌翻译
即使在数十年的量子计算开发之后,通常在经典同行中具有指数加速的通常有用量子算法的示例是稀缺的。线性代数定位量子机学习(QML)的量子算法中的最新进展作为这种有用的指数改进的潜在来源。然而,在一个意想不到的发展中,最近一系列的“追逐化”结果同样迅速消除了几个QML算法的指数加速度的承诺。这提出了关键问题是否是其他线性代数QML算法的指数加速度持续存在。在本文中,我们通过该镜头研究了Lloyd,Garnerone和Zanardi的拓扑数据分析算法后面的量子算法方法。我们提供了证据表明,该算法解决的问题通过表明其自然概括与模拟一个清洁量子位模型很难地难以进行棘手的 - 这被广泛认为需要在经典计算机上需要超时时间 - 并且非常可能免疫追逐。基于此结果,我们为等级估计和复杂网络分析等问题提供了许多新的量子算法,以及其经典侵害性的复杂性 - 理论上。此外,我们分析了近期实现的所提出的量子算法的适用性。我们的结果为全面吹嘘和限制的量子计算机提供了许多有用的应用程序,具有古典方法的保证指数加速,恢复了线性代数QML的一些潜力,以成为量子计算的杀手应用之一。
translated by 谷歌翻译